Write My Paper Button

WhatsApp Widget

Scenario:  You are a Data Scientist at a global analytics firm and have been assigned to forecast trends in a unique timeseries of monthly values (each student will receive different data). Your forecasts will help

DATA4400 Fitting and evaluating time series models Assignment

Assessment 2 Information

Subject Code: DATA4400
Subject Name: Data-driven Forecasting
Assessment Title: Fitting and evaluating time series models
Assessment Type: Individual report(20%); Quiz (10%)
Word Count: Report = 500 Words(+/-50%)
Weighting: 30%
TotalMarks: 30
Submission:

Individualreport:

  1. Individual reportvia Turnitin
  2. Data filesvia Dropbox

 

Quiz via portal

Due Date: Report on Tuesday at 11.55 pm AEST Week 9 Quiz by Friday 5 pm AEST of Week 9

 

Your Tasks

 

  1. Part A: Submit an Individual report on Forecasting Techniques and Time Series

 

  1. Part B: Quiz (30 minutes): Answer multiple choice questions based on Workshops 1 to 8 material.

 

Assessment Instructions

Part A Report: Forecasting for Decision-Making: A Data-Driven Approach

 Scenario:

 You are a Data Scientist at a global analytics firm and have been assigned to forecast trends in a unique timeseries of monthly values (each student will receive different data). Your forecasts will help business leaders optimise decision-making in areas such as demand planning, climate predictions, financial projections, or consumer trends.

 

Your task is to apply a series of forecasting techniques and produce a report explaining your methodology, results, and recommendations.

 

You will be provided with a dataset on Monday of Week 7.

 

Your report should be well-structured, professionally formatted, and include clear visualisations to communicate findings effectively.

 

You can use software of your choice such as Excel, Exploratory, Orange, Python, or Tableau Public to assist.

 

Important: If using Tableau Public, you must include screenshots of all your parameters, model evaluation metrics, and settings changes as you will not be able to download the project from Tableau Public to submit the file via the portal.

 

1. Exponential Smoothing & Holt-Winters Method (3 marks)

  • Apply Simple Exponential Smoothing and Holt-Winters (Triple Exponential Smoothing) and forecast for one year ahead. Calculate the MASE for Holt-Winters over the final year, where you define a monthly seasonal naive forecast as the value in the latest corresponding month.
  • Interpret all of the analysis above.

 

2. Prophet and correlogram (5 marks)

  • Fit Prophet to the time series with additive seasonals and with multiplicative seasonals. Calculate the RMSE. Continue with the option that gives the lower RMSE.
  • Identify seasonality patterns and trends and discuss their impact on forecasting decisions.
  • Obtain the Remainder series from your Prophet fit. Calculate the ACF and PACF of the Remainder series. Explain the role of ACF and PACF plots in time series forecasting.
  • Interpret all of the analysis above.

 

3. Seasonal ARIMA Modelling (4 marks)

  • Implement seasonal ARIMA models.
  • Discuss the model selection criteria you use to choose a suitable model. State the order of your chosen model together with its RMSE
  • Forecast for 1 year ahead and provide 68% limits of prediction.
  • Compare your chosen seasonal ARIMA results to Holt-Winters and state which model you would recommend in this context.

 

4. Var models (6 marks)

  • What is a VAR model, and when is it used in forecasting?
  • Find a real-world application of VAR and discuss how VAR can be implemented.
  • Explain the concept of Granger causality and its application in time series forecasting.
  • Is there evidence of Granger causality in the VAR application you found?

 

5. Professionalism (2 Marks)

  • Your report should be clear, well-structured, and formatted professionally to effectively communicate your forecasting insights. Include graphs, tables, and statistical outputs to support your discussion. Ensure clear labelling and professional formatting.
  • Your referencing must be correct and without the use of Generative AI in the report.
  • Your report must be submitted in Word format to the correct portal on time.

 

 

REPORT SUBMISSION GUIDELINES

 

 Technical Tools Allowed:

  • Excel, Tableau Public, Exploratory, Orange, Python (or any relevant software). If using Tableau Public, you must include screenshots of all your parameters, model evaluation metrics, and

 

settings changes as you will not be able to download the project from Tableau Public to submit the file via the portal.

 

 File Format:

  • Submit as a Word document.
    • Submit other software files.

 

 

Part B Quiz:

  • The quiz will be available from Monday 10:00 am – Friday 5 pm (AEST) Week 9.
    • You will enter the “Attempt Quiz” on MyKBS in the Assessment Table for A2.
    • Answer 15 multiple-choice questions.
    • Once you start the quiz you will have 30 minutes to complete it.
    • You can start the quiz anytime between 10 am AEST Monday to 5 pm AEST Friday, Week 9. If you miss this window, the quiz will not be opened to you again.
    • The quiz can only be attempted once.
    • Backtracking of questions is not allowed. You must complete the question before moving on to the next one. You will not be able to go back to the previous question.
    • This is an open-book quiz however the use of Generative AI is not permitted.

 

Generative AI Traffic Lights

Please see the level of Generative AI that this assessment has been designed to accept:

 

 

Traffic Light

Amount of Generative Artificial

Intelligence (GenerativeAI) usage

 

Evidence Required

This assessment

()

 

 

 

Level 1

Prohibited:

 

No GenerativeAI allowed

 

This assessment showcases your individual knowledge, skills and/or personal experiences in the absence of Generative AI support.

 

 

The use of generative AI is prohibited for this assessment and may potentially result in penalties for academic misconduct, including but not limited to a mark of zero for the assessment.

 

 

 

 

 

 

 

 

 

 

 

 

Level 2

 

 

 

 

Optional:

 

You may use GenerativeAI for research and content generation that is

appropriately referenced.

 

See assessment instructions for details

 

This assessment allows you to engage with Generative AI as a means of expanding your understanding, creativity, and idea generation in the research phase of your assessment and to produce content that enhances your assessment. I.e., images. You do not have to use it.

 

The use of GenAI is optional for this assessment.

 

Your collaboration with GenerativeAI must be clearly referenced just as you would reference any other resource type used.Click on the link below to learn how to reference GenerativeAI.

 

https://library.kaplan.edu.au/referencing-other- sources/referencing-other-sources-generative-ai

 

In addition, you must include an appendix that documents your GenerativeAI collaboration including all prompts and responses usedfor the assessment.

 

Unapproved useof generative AI as per assessment details during the content generation parts of your assessment may potentially result in penalties for academic misconduct, including but not limited to a mark of zero for the assessment. Ensure you follow the specific assessment instructions in the section above.

 

 

 

 

 

 

 

 

 

 

 

 

 

Level 3

 

 

 

 

Compulsory:

 

You must use GenerativeAI to complete your assessment

 

See assessment instruction for details

 

This assessment fully integrates Generative AI, allowing you to harness the technology’s full potential in collaboration with your own expertise.

 

Always check your assessment instructions carefully as there may still be limitations on whatconstitutes acceptable use, and these may be specific to each assessment.

 

You willbe taught how touse generative AI and assessed on its use.

 

Your collaboration with GenerativeAI must be clearly referenced just as you would reference any other resourcetype used. Click on the link belowto learn how to reference GenerativeAI.

 

https://library.kaplan.edu.au/referencing-other- sources/referencing-other-sources-generative-ai

 

In addition, you must include an appendix that documents your GenerativeAI collaboration including all prompts and responses usedfor the assessment.

 

Unapproved useof generative AI as per assessment details during the content generation parts of your assessment may potentially result in penalties for academic misconduct, including but not limited to a mark of zero for the assessment. Ensure you follow the specific assessment instructions in the section above.

Scroll to Top